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Basic genetic diversity analysis
Types of variables
Quantifying genetic diversity:

• Measuring intrapopulation genetic diversity
• Measuring interpopulation genetic diversity

Quantifying genetic relationships:
• Diversity and differentiation at the nucleotide level
• Genetic distance

Displaying relationships:
• Classification or clustering
• Ordination

Appendices

Contents
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1. Description of variation within 
and between populations, 
regions, etc.

2. Assessment of relationships 
among individuals, populations, 
regions, etc.

3. Expression of relationships 
between results obtained from 
different sets of characters
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Most of the genetic diversity analysis that we might want to do will involve the 
following steps:

1. Describing the diversity. This may be done within a population or between 
populations. It may also extend to larger units such as areas and regions. 

2. Calculating the relationships between the units analysed in step one. This 
entails calculating the distances (geometric or genetic) among all pairs of 
subjects in the study.

3. Expressing these relationships with any classification and/or ordination 

method at hand. Some of these methods will permit comparing the results 
of our molecular study with other types of data (e.g. geographical). In the 
slide, Ind1, Ind2, … may represent, instead of individuals, populations or 
regions.
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Qualitative. These refer to characters or 
qualities, and are either binary or categorical:

• Binary, taking only two values: present (1) or 
absent (0)

• Categorical, taking a value among many 
possibilities, and are either ordinal or nominal:

Ordinal: categories that have an order
Nominal: categories that are unrelated

Quantitative. These are numerical and are 
either continuous or discrete:

• Continuous, taking a value within a given range
• Discrete, taking whole or decimal numbers 

Types of variable

Examples of qualitative variables:
• Binary: e.g. leaf hairiness: present (1), absent (0)
• Categorical: 

Ordinal: e.g. stalk hairs: rare (1), common (2), abundant (3) or
petiole length: short (1), medium (2), long (3)
Nominal: e.g. petal colour: yellow (1), red (2), white (3), purple (4)

Examples of quantitative variables:
• Continuous: e.g. root weight (g); leaf length (cm) 
• Discrete: e.g. number of stamens: 2, 3, 4, ...

number of fruits: 1, 2, 3, …

Categorical variables can be converted to binary variables, but with limitations 
because, as we will see later, some similarity coefficients give a weight to the 
category of a character and this may bias against other characters being evaluated. 
That is, the more categories a variable has, the more weight it has when combined 
with other binary or categorical variables with few categories. 

An example of converting a categorial variable into a binary one:
Petiole length: short (1), medium (2), long (3)

Short: present (1), absent (0)
Medium: present (1), absent (0)
Long: present (1), absent (0)

Quantitative variables can also be converted to binary variables, for example: 
From 0 to 3 fruits: present (1), absent (0)
From 4 to 7 fruits: present (1), absent (0), ...   
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Quantifying genetic diversity: measuring
intrapopulation genetic diversity

Based on the number of variants
• Polymorphism or rate of polymorphism (Pj)
• Proportion of polymorphic loci
• Richness of allelic variants (A)
• Average number of alleles per locus

Based on the frequency of variants
• Effective number of alleles (Ae)
• Average expected heterozygosity (He; Nei’s genetic 

diversity)
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A gene is defined as polymorphic if the frequency 
of one of its alleles is less than or equal to 0.95 or 
0.99

Pj = q 0.95 or Pj = q 0.99

Polymorphism or rate of polymorphism (Pj)

Where,
Pj = rate of polymorphism
q = allele frequency

• This measure provides criteria to demonstrate that a gene is showing 
variation. 

• Its calculation is through direct observation of whether the definition is 
fulfilled. 

• It can be used with codominant markers and, very restrictively, with dominant 
markers. This is because the estimate based on dominant markers would be 
biased below the real number.

A polymorphic gene is usually one for which the most common allele has a 
frequency of less than 0.95. Rare alleles are defined as those with frequencies of 
less than 0.005. The limit of allele frequency, which is set at 0.95 (or 0.99) is 
arbitrary, its objective being to help identify those genes in which allelic variation is 
common.

Reference

Cavalli–Sforza, L.L. and W.F. Bodmer. 1981. Genética de las Poblaciones 
Humanas. Ed. Omega, Barcelona.
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This the number of polymorphic loci divided by the 
total number of loci (polymorphic and monomorphic), 
that is:

P = npj/ntotal

Proportion of polymorphic loci

Where,
P = proportion of polymorphic loci
npj = number of polymorphic loci
ntotal = total number of loci

• It expresses the percentage of variable loci in a population.

• Its calculation is based on directly counting polymorphic and total loci.

• It can be used with codominant markers and, very restrictively, with dominant 
markers (see previous slide for explanation).
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Refers to the number of variants in a sample 

The measure of diversity is (A - 1) variants 
because, within a monomorphic population, the 
degree of diversity is zero (A - 1 = 0)

Richness of allelic variants (A)

• For a given gene in a sample, this measure tells how many allelic variants can 
be found.

• It is sensitive to sample size.

• Although the distribution of alleles does not matter, the maximum number of 
alleles does.

• The measure can only be applied with codominant markers.
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K

1i

in1/Kn

Average number of alleles per locus

It is the sum of all detected alleles in all loci, divided 
by the total number of loci

Where,
K = the number of loci 
ni = the number of alleles detected per locus

• This measure provides complementary information to that of polymorphism.

• It requires only counting the number of alleles per locus and then calculating 
the average.

• It is best applied with codominant markers, because dominant markers do not 
permit the detection of all alleles.
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Effective number of alleles (Ae)

It is the number of alleles that can be present in a 
population

Ae = 1/(1 – h) = 1/ pi
2

Where,
pi = frequency of the ith allele in a locus 

h = 1 – pi
2 = heterozygosity in a locus

• The measure tells about the number of alleles that would be expected 
in a locus in each population.

• It is calculated by inverting the measure of homozygosity in a locus.

• It can be used with codominant marker data.

• Its calculation may be affected by sample size.

This measure of diversity may be informative for establishing collecting 
strategies. For example, we estimate it in a given sample. We then verify it 
in a different sample or the entire collection. If the figure obtained the 
second time is less than the first estimated number, this could mean that 
our collecting strategy needs revising.
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1.002.942.172.17Effective number of alleles

0.000.660.540.54Heterozygosity (h)

0.000.400.300.30Frequency of allele 3

0.000.300.100.10Frequency of allele 2

1.000.300.600.60Frequency of allele 1

1333Number of alleles

C1 C1C3 C3B3 B3A3 A3Individual 5

C1 C1C2 C3B1 B3A1 A3Individual 4

C1 C1C1 C3B1 B1A1 A1Individual 3

C1 C1C2 C2B1 B2A1 A2Individual 2

C1 C1C1 C1B1 B1A1 A1Individual 1

Population 1Loci (A, B, C)

Calculating the Ae: an example

The table on the slide shows an example for calculating the effective number of 
alleles. The two populations each have 5 individuals. For each individual, 3 loci are 
analysed, each with a different number of alleles, depending also on the population 
(locus A has 3 alleles in population 1 and only 2 alleles in population 2, and so on). 
First, allele frequencies are calculated for each locus and each population; then,
heterozygosity in each locus; and finally, the Ae, according to the formula shown in 
the previous slide.
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It is the probability that, at a single locus, any 
two alleles, chosen at random from the 
population, are different to each other

Three calculations are possible:
• A locus with two alleles: hj = 1 – p2 – q2

• A locus j with i alleles: hj = 1 – pi
2

• Average for several loci: H = j
Lhj/L

The average He over all loci is an estimate of the
extent of genetic variability in the population

Average expected heterozygosity (He)
(Nei’s genetic diversity [D])

Where,
hj = heterozygosity per locus
p and q = allele frequencies
H = average heterozygosity for several loci
L = total number of loci

• The average expected heterozygosity is calculated by substracting from 1 the 
expected frequencies of homozygotes in a locus. The operation is repeated 
for all loci and the average then performed.

• It can be applied to all markers, both codominants and dominants.

• The estimated value may be affected by those alleles present at higher 
frequencies.

• It ranges from 0 to 1.

• It is maximized when there are many alleles at equal frequencies.

• A minimum of 30 loci in 20 individuals per population should be analysed to 
reduce the risk of statistical bias.
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Calculating diversity with a codominant 
molecular marker

Individuals

Locus A

Locus B

Locus E

Locus C

Locus D

M 1 2 3 4 5 6 7 8 9 10

Gel
11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 2920 30

Data scoring

Locus A

Locus B

Locus E

Locus C

Locus D

1,1   0,1  1,1   0,1  0,1   0,1   0,1   0,1   0,1   1,0 0,1  0,1  0,1  0,1   0,1   1,1   0,1  0,1   0,1   0,1   0,1  0,1   0,1    1,0   0,1   0,1  1,1  0,1  0,1  0,1

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 2920 30

0,1   0,1  0,1   0,1  0,1  1,1   0,1   0,1   0,1   0,1 0,1   0,1  0,1  1,0   1,0   1,0   0,1  0,1   0,1   0,1   0,1  0,1   1,0    0,1   1,1   0,1  1,0  1,0  1,0  1,1

1,0   1,0  1,0   1,0  1,0  1,0   1,0   1,0   1,0   1,0 1,0   1,0  1,0  1,0   1,0   1,0  1,0  1,0   1,0   1,0   1,0   1,0    1,0   1,0   1,0   1,0   1,0  1,0  1,0  1,0

1,0   1,0  1,0   1,0  1,0  1,0   1,0   1,0   1,0   1,0 1,0   1,0  1,0  1,0   1,0   1,0  1,0  1,0   1,0   1,0   1,0   1,0    1,0   1,0   1,0   1,0   1,0  1,0  1,0  1,0

0,1   1,1  0,1   1,1  0,1  1,0   1,1   1,0   1,1   1,1 1,1   1,0  1,0  1,0   1,0   1,0  1,0  1,0   1,0   0,1   0,1   1,0    1,0   1,0   1,0   1,0   1,1  1,1  0,1  0,1

(continued on next slide)

The top half of this slide shows a drawing of a gel with a size marker on the left (M) 
and 30 individuals analysed with a codominant marker, which detected five loci (A, 
B, C, D and E). Of these loci, only three are polymorphic (A, B and E). 

The bottom half of the slide shows the results of scoring bands per individual and 
per locus. Note that, for ease of presentation, no more than two alleles per locus 
were depicted. Although the bands belonging to loci C and D were scored (1,0) for 
all individuals, scoring was not necessary, because the bands did not yield 
information on diversity.

See next slide for calculations.
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0.22

Hi

0.46

0.41

0.23

hj =

(1 - p2 - q2)

0.37

q

0.72

q

0.87

q

0.63
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0.28
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Allele
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1
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1

Total

1

30

1

Total

1

30

1

Total

E2 E2E1 E2E1 E1Genotypes

E
q22pqp2Gen. freq.  (exp.)

7815Individuals (no.)

P22 = 0.23P12 = 0.27P11 = 0.50Gen. freq.  (obs.)

B2 B2B1 B2B1 B1Genotypes

B
q22pqp2Gen. freq.  (exp.)

2037Individuals (no.)

P22 = 0.67P12 = 0.10P11 = 0.23Gen. freq.  (obs.)

P22 = 0.80P12 = 0.13P11 = 0.07Gen. freq.  (obs.)

Data analysisLocus

2

p2

A1 A1

244Individuals (no.)

q22pqGen. freq.  (exp.)

A2 A2A1 A2Genotypes

A

Calculating diversity with a codominant 
molecular marker (continued)

1. First, we note that loci A, B and E are polymorphic because they fulfill the 
requirement of having allele frequencies below 0.99. Loci C and D are 
monomorphic. (exp. = expected value; obs. = observed value.)

2. The proportion of polymorphic loci is P = (3/5) = 0.6 or 60%. That is, the number 
of polymorphic loci is divided by the total number of loci analysed.

3. To calculate average heterozygosity (Ho), we: 
a. Count how many loci, out of the total, are heterozygous. For instance, 

Individual1 has one heterozygous locus (A), Individual2 also has one (E), 
Individual27 has 2 heterozygous loci (A and E), ... . In all, 16 individuals
were monomorphic (i.e. they had only one band in each of the five loci), 
13 individuals had 1 heterozygous locus and 1 individual had 2 
heterozygous loci.

b. Calculate the average observed heterozygosity as:

Ho = [16(0/5) + 13(1/5) + 1(2/5)]/(30) = 0.1

4. The intralocus gene diversity (hj) is calculated for each locus according to the 
formula in the top row of the table, giving us locus A = 0.23, locus B = 0.41 and 
locus E = 0.46.

5. The average expected gene diversity (Hi) is calculated from the formula in slide 
number 12:

Hi = (0.23 + 0.41 + 0.46)/5 = 0.22
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Locus A

Locus B

Locus E

Individuals

Locus C

Locus D

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 2920 30

Data scoring

1     0     1     0      0      0      0      0     0      1     0     0     0       0      0     1     0      0   0     0      0       0     0      1       0     0     1     0     0     0    

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 26 27 28 2920 30

0     0     0     0      0      1      0      0     0      0     0     0     0       1      1     1     0      0   0     0      0       0     1      0       1     0     1     1     1     1    

1     1     1     1      1      1      1      1     1      1     1     1     1       1      1     1     1      1   1     1      1      1      1      1       1     1     1     1     1     1  

0     1     0     1      0      1      1      1     1      1     1     1     1       1      1     1     1      1   1     0      0      1      1      1       1     1     1     1     0     0

1     1     1     1      1      1      1      1     1      1     1     1     1       1      1     1     1      1   1     1      1      1      1      1       1     1     1     1     1     1  

Locus A

Locus B

Locus E

Locus C

Locus D

Calculating diversity with a dominant 
molecular marker

(continued on next slide)

The top half of this slide shows a drawing of a gel with a size marker on the left (M) 
and 30 individuals analysed with a dominant marker. Five loci are identified (A, B, 
C, D and E). Of the five loci detected, three are segregating (A, B and E), while the 
other two, C and D, are monomorphic. 

The bottom half of the slide shows the results of scoring bands per individual and 
per locus. Because we are dealing with a dominant marker, bands are scored as 1 
when present or 0 when absent. Scoring the bands for loci C and D can be either 
omitted or done as in the slide with ‘1’ for every individual.

The next slide shows the calculations.
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0.198

Hi

0.50

0.30

0.19

hj =

(1 - p2 – q2)

0.48

q

0.82

q

0.89

q

0.52

p

0.18

p

0.11

p

Allele

freq.

1

30

1

Total

1

30

1

Total

1

30

1

Total

eeEeEEGenotypes

E

q22pqp2Gen. freq. (exp.)

723Individuals (no.)

P2 = 0.23P1 = 0.77Gen. freq.  (obs.)

bbBbBBGenotypes

B

q22pqp2Gen. freq. (exp.)

2010Individuals (no.)

P2 = 0.67P1 = 0.33Gen. freq.  (obs.)

P2 = 0.80P1 = 0.20Gen. freq.  (obs.)

Data analysisLocus

6

p2

Aa

24Individuals (no.)

q22pqGen. freq. (exp.)

aaAaGenotypes

A

Calculating diversity with a dominant 
molecular marker (continued)

1. First, we look at the polymorphism shown by all loci. Loci A, B and E fulfill the 
requirement of having allele frequencies below 0.99 and as such can be said to 
be polymorphic. Loci C and D are monomorphic. (exp. = expected value; obs. = 
observed value.)

2. The proportion of polymorphic loci (P) is P = (3/5) = 0.6 or 60%. The average 
heterozygosity (He) cannot be estimated because dominant markers do not 
allow discrimination between heterozygous and homozygous individuals. 

3. Despite the above (2), the intralocus gene diversity (hj) may be calculated for 
each locus using the formula that appears in the top row of the table, column 4, 
as follows: locus A = 0.19; locus B = 0.30; and locus E = 0.50.

4. The average gene diversity (Hi) is calculated from the formula in slide number 
12:

Hi = (0.19 + 0.30 + 0.50)/5 = 0.198



17

Copyright: IPGRI and Cornell University, 2003 Measures 17

Interpopulation differentiation for one locus (gST)

Interpopulation differentiation for several loci 
(GST)

Population’s contribution to total genetic 
diversity

F statistics (Wright)

Analysis of molecular variance (AMOVA)

Quantifying genetic diversity: measuring
interpopulation genetic diversity

‘Differentiation’ refers to polymorphic differences between populations at different 
levels of structure (populations and individuals).
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gST = 1 – (hS/hT)

hS = population diversity

hT = total diversity

Interpopulation differentiation for one locus 
(gST)

Where,
hS = (ñ/(ñ - 1)[1 – (1/s) xij

2 – (ho/2ñ)]
hT = 1 - [(1/s) xij]

2 + (hS/ñs) – (ho/2ñs)
ñ = harmonic average of population sizes 
s = number of populations
ho = average observed heterozygosity
xij = estimated frequency of the ith allele in the jth population

• The formula in the slide provides a measure of differentiation in terms of 
alleles per locus in two or more populations

• It ranges from 0 to 1. A negative value may be obtained if an error was made 
for sampling or an inappropriate marker system was used. 

• Because of the complexity of its components, its calculation requires 
specialized computer software.

• It can be used with codominant markers and restrictedly with dominant 
markers. This is because it is a measure of heterozygosity. To have a fair 
estimate of the real value, several generations are needed.
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gST = 1 – (hs/hT) = 1 – (0.4196/0.8065) = 0.4797

hT = 1 – 0.1967 + [0.4196/(33.33 x 3)] – [0.20/(2 x 33.33 x 3)] = 0.8065

[1/3 xij]
2 = (1/3(0.35))2 + (1/3(0.65))2 + (1/3(0.20))2 + … + (1/3(0.35))2 = 0.1967

hs = (33.33/33.33 – 1)[1 – 1/3(1.77) – (0.20/2(33.33))] = 0.4196

ñ = 33.331/ñ = 1/n1 + 1/n2 + 1/n3 = 1/100 + 1/100 + 1/100 = 0.03

(p2 + q2) = 1.77s = 3ho = 1/3(0.3 + 0.2 + 0.1) = 0.20

0.5450.350.65301060Pop. 3

0.6800.800.20702010Pop. 2

0.5450.650.35503020Pop. 1

p2 + q2qpA2 A2A1 A2A1 A1Genotypes

Calculating the gST

In this example, we have the number of individuals for each genotype for one locus 
(A) in three different populations. Using this number, we want to know the degree of 
differentiation in the three populations. In the table, the calculations are followed for 
all the necessary elements in the formula shown on the previous slide.

The result (gST = 0.4797) shows significant differentiation between populations in 
allele frequencies. We can therefore say that a high percentage of genetic diversity 
is distributed among populations.
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HS HSDST

Pop1

Pop2

Pop3

HS

DST DSTHT

Interpopulation differentiation for several loci 
(GST)

GST is the coefficient of gene differentiation

GST = DST/HT

Where,
HT = total genic diversity = HS + DST

HS = intrapopulation genic diversity
DST = interpopulation diversity
(HT/HT) = (HS/HT) + (DST/HT) = 1

• GST measures the proportion of gene diversity that is distributed among 
populations.

• A larger number of loci must be sampled.

• Equations are complex and should be calculated with specific computer 
software.

For example, assuming that:

HT = 0.263  
HS = 0.202
DST = 0.263 – 0.202 = 0.061

Then, GST = (DST/HT) 100 = (0.061/0.263) 100 = 23.19%. This means that, in 
this species, a 23% differentiation among populations exist.
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The contribution is calculated by removing a 
population so that its contribution to the total gene 
diversity may be evaluated 

CT(K) = (HT – HT/K)/HT

CS(K) = (HS – HS/K)/HT

CST(K) = (DST – DST/K)/HT

Population’s contribution to total gene 
diversity

Where,
CT(K) = contribution of K to total diversity
CS(K) = contribution of K to intrapopulation diversity
CST(K) = contribution of K to interpopulation diversity
HT = total gene diversity
HS = intrapopulation genic diversity
DST = interpopulation diversity
HT/K = total gene diversity after removing population K
HS/K = intrapopulation gene diversity after removing population K 
DST/K = interpopulation gene diversity after removing population K

• The measure allows quantifying the variation of total gene diversity when a 
population is introduced to or removed from a site (e.g. when introducing a 
new variety into a farmer’s field in an in situ conservation programme).

• It also serves to measure the impact of losing a population from a given site in 
terms of gene diversity. 

• It can be used only with codominant markers.
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The equation for the genetic structure of populations 
is:

(1 - FIT) = (1 – FIS)(1 – FST)

FIT = 1 – (HI/HT)

FIS = 1 – (HI/HS)

FST = 1 – (HS/HT)

F statistics (Wright)

Where,
HT = total gene diversity or expected heterozygosity in the total population 
as estimated from the pooled allele frequencies
HI = intrapopulation gene diversity or average observed heterozygosity in 
a group of populations 
HS = average expected heterozygosity estimated from each 
subpopulation

The F statistics allow analysis of structures of subdivided populations. It may also 
be used to measure the genetic distance among subpopulations, a concept that is 
based on the idea that those subpopulations that are not intermating will have 
different allele frequencies to those of the total population.

Genetic distance also provides a way of measuring the probability of encounter 
between equal alleles (endogamy). The statistical indexes involved measure:

FIS = the deficiency or excess of average heterozygotes in each 
population
FST = the degree of gene differentiation among populations in terms of 
allele frequencies 
FIT = the deficiency or excess of average heterozygotes in a group of 
populations
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The range of the FST is:

10

(fixation for alternate 

alleles in different 

subpopulations)

(no genetic divergence)

When FST is: then the genetic differentiation is:

0 to 0.05 small 
0.05 to 0.15 moderate
0.15 to 0.25 large
>0.25 very large

Interpreting FST values
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(0.495 + 0.420)/2 = 0.4575

Genotype frequency

HS

(0.45 + 0.30)/2 = 0.375qo(0.3 + 0.2)/2 = 0.25HI

(0.55 + 0.70)/2 = 0.625po2(0.625)(0.375) = 0.4688HT

0.52380.42000.300.700.200.200.602

0.39390.49500.450.550.300.300.401

F2piqiqipiA2 A2A1 A2A1 A1

Pop.

FIT = 1 – (0.25/0.4688) = 0.4667

FIS = 1 – (0.25/0.4575) = 0.4536

FST = 1 – (0.4575/0.4688) = 0.0241 

Calculating F statistics

(continued on next slide)

This slide shows an example of two populations and the analysis of one locus (A). 
The allele frequencies are calculated (p and q), as are their averages. The variables 
HT, HI and HS are also estimated and used to calculate the F statistics. The analysis 
shows low differentiation in allele frequencies among the two populations (FST). We 
could conclude that almost all the heterozygote deficit was due to nonrandom 
mating within the populations (FIS = 0.4536).

F = fixation index (first column on right of table) is the probability that two alleles 
carried by one individual will be the same. It should be calculated only with 
codominant markers. If done with dominant markers, a biased estimator may result. 
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qo

Genotype frequency

(0.500 + 0.255)/2 = 0.3775HS

(0.50 + 0.15)/2 = 0.325(0.5 + 0.1)/2 = 0.30HI

(0.50 + 0.85)/2 = 0.675po2(0.675)(0.325) = 0.4388HT

0.60780.2550.150.850.100.100.802

0.00000.5000.500.500.250.500.251

F2piqiqipiA2 A2A1 A2A1 A1

Pop.

FIT = 1 – (0.30/0.4388) = 0.3163

FIS = 1 – (0.30/0.3775) = 0.2053

FST = 1 – (0.3775/0.4388) = 0.1397 

Calculating F statistics (continued)

This is another example for which the procedures used in the previous slide were 
followed. Differentiation in allele frequencies between the two populations seems 
greater (FST = 0.1397), with only a moderate effect of nonrandom mating within the 
populations (FIS = 0.2053).
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AMOVA is a method for studying molecular 
variation within a species

It is based on a hierarchical or nested model 

It differs from an analysis of variance (ANOVA)
in that:

• It may contain different evolutionary assumptions 
without modifying the basic structure of the analysis

• The driving hypothesis uses permutational methods 
that do not require the assumption of a normal 
distribution

Analysis of molecular variance (AMOVA)

The different hierarchical levels of gene diversity studied through AMOVA may 
include:

1. Continents, which may contain lesser hierarchical levels

2. Geographical regions within a continent 

3. Areas within a region in a continent 

4. Populations within an area of a region in a continent 

5. Individuals within a population in an area of a region in a continent 

The mathematical description of the model for situations 3 and 4 can be found in 
Appendices 2 and 3, respectively.

The next two slides illustrate how to analyse situation 4.
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01101115

01011114

10111113

01110012

11100111

10011110

0111019

0011008

1111117

0010006

1010005

1101014

1011003

1110112

1110001

A
2

A
1

A
2

A
1

A
2

A
1

Pop. 3Pop. 2Pop. 1Ind.

AbsentA1 = 0

PresentA1 = 1

2916X...2

54182115Xijk
2

88283327Xi...k
2

990324441225X...k
2

54182115X...k

0.22222222MSw10SSw

0.26190476MSb11SSb

0.3MSa0.6SSa

An example of AMOVA

(continued on next slide)

In this table, we show data obtained with 15 individuals from each of three 
populations in an analysis with a codominant marker. By means of an analysis of 
variance, these data will allow us to calculate the F statistics. 

The first step is to convert the bands detected in the gels to binary variables with a 
value of either 0 or 1. Then, the sums of presences (1) are calculated so we may 
proceed with the sum of squares. Calculations are first done for one population and 
continued for the others until we have (X...k). We have i = 15 individuals (effect b), j 
= 2 alleles (effect w), k = 3 populations (effect a).

Where,
X...k is the result of summing up all the band presences (1) in the 
individuals per population
X...k

2 is the result of squaring the number obtained above
Xi...k

2 is the result of adding up the squares of the sum of allele 
presences in each individual (e.g. Indiv.1 in Pop.1 will be (0 + 0)2 + Indiv.2
in Pop.1 (1 + 1)2 + Indiv. ...)

Xijk
2 is the sum of each value squared

SS is the sum of squares for effects a, b and w
An example of calculating SS: 
SSa = X...k

2/ij – X...2/ijk = [990/(15 x 2)] - [2916/(15 x 2 x 3)] = 0.6
MS are the mean squares for effects a, b and w
An example of calculating MS: SSa/dfa = 0.6/2 = 0.3, where dfA refers to 
the degrees of freedom for effect a (populations).
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w
20.222222221045Within indiv.

w
2 + 2 b

20.261904761142Indiv./pop.

w
2 + 2 b

2 + 2*15 a
20.30.62Populations

EMSMSSSdfSV

0.91324(1 - FIS)(1 - FST)

0.91324(1 - FIT)

0.0052185FST

0.0819672FIS

0.086758FIT

0.243332

0.2222222w
2

0.0198413b
2

0.0012698a
2

Estimates of variances and F statistics

An example of AMOVA (continued)

Where,
SV = sources of variation
df = degrees of freedom
SS = sum of squares (see previous slide)
MS = mean squares (see previous slide)

2 = total estimated variance 
EMS = expected mean squares 

w
2 = 0.2222222

b
2 = (MSb – MSw)/2 = (0.26190476 – 0.22222222)/2 = 0.0198413

a
2 = (MSa – MSb)/2 15 = (0.3 – 0.26190476)/2 15 = 0.0012698

2 = w
2 + b

2 + a
2 = 0.24333 (total estimated variance)

Calculating the F statistics has already been explained in slide 22. For this particular 
example, they would be as follows:

FIT = ( a
2 + b

2)/ 2 = (0.0012698 + 0.0198413)/0.24333 = 0.086758
FST = a

2/ 2 = 0.0012698/0.24333 = 0.0052185
FIS = b

2/( b
2 + w

2) = 0.0198413/(0.0198413 + 0.222222) = 0.0819672

The allele frequency differentiation among the three populations is very low 
(FST = 0.0052185) and is probably a result of many random matings. More loci need 
to be analysed to make a conclusion.
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Using sequence data
• Intrapopulation nucleotide diversity
• Interpopulation nucleotide diversity 

Using restriction data
• Variations in banding patterns
• Intrapopulation nucleotide diversity
• Interpopulation nucleotide diversity

Quantifying genetic relationships: diversity
and differentiation at the nucleotide level

For these calculations, the assumption is made that each nucleotide is a locus.
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It measures the nucleotide diversity among several 
sequences in a given region of the genome within a 
population ( X)

X = n/(n – 1) XiXj ij

Using sequence data: intrapopulation
nucleotide diversity

Where,
n = number of sequences under analysis in the individuals of the
population
Xi = estimated frequency of the ith sequence in the population 
Xj = estimated frequency of the jth sequence in the population 

ij = proportion of different nucleotides between sequences i and j

• The measure informs about the degree of nucleotide diversity among several 
sequences in a given region of the genome. It is equivalent to the measure of 
allelic diversity within a locus. 

• It ranges from 0 to 1 (0 X 1).

• The factors limiting the use of this analytical tool are: 

Partial genomic sequences must be available
The equation can only be applied to haploid data

This parameter informs about nucleotide sequences, and the model assumes 
haplotypes (haploid genotypes). Even if the study is based on diploid individuals, 
sequencing of each copy of the genome is needed.
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10

2

1

2

5

n

2/10 = 0.2TCC  G  CGAT  T  ATTC  T  CAGGGTGC  G  GATG  A  ATSeq4

1/10 = 0.1TCC  A  CGAT  C  ATTC  C  CAGGGTGC  A  GATG  G  ATSeq3

2/10 = 0.2TCC  A  CGAT  T  ATTC  G  CAGGGTGC  C  GATG  A  ATSeq2

5/10 = 0.5TCC  T  CGAT  T  ATTC  C  CAGGGTGC  C  GATG  A  ATSeq1

Freq. XiSequence

1,2 = 2/30, 1,3 = 4/30, 1,4 = 3/30, 2,3 = 4/30, 2,4 = 3/30, 3,4 = 5/30 

X = 10/(10 – 1) XiXj ij

= (10/9)[0.5 0.2 (2/30) + 0.5 0.1 (4/30) + ... + 1 0.2 (5/30)]

= 0.037

Calculating intrapopulation nucleotide 
diversity

This example has 10 individuals in a population X. For each individual, we analyse 
one sequence of 30 nucleotides, and find that individual sequences differ at 5 
nucleotide positions (blue). In total, 4 alternative sequences for those 30 nucleotides 
are present in the population. In the first column, we note the number of individuals 
(n) that have the particular sequence alternatives.

Then, we calculate the number of nucleotide differences in each sequence pair 
within the population. For example, 1,2 = 2/30 means that between sequence 
1 and 2 there are two nucleotide differences (T vs. A in position 4, and C vs. G in 
position 14).

Next, we calculate X for the entire population. The number obtained is 0.037, 
or 3.7% nucleotide diversity, based on the sequence analysed in the sample of 10 
individuals.
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VXY measures population divergence based on the degree 
of sequence variation (1 sequence, 2 populations)

VXY = dXY – ( X + Y)/2

VW measures average diversity in a population based on 
several sequences

VW = (1/s) X

Vb measures the total differentiation in several populations

Vb = [1/(s(s – 1))] X YVXY

NST is the relative differentiation 

NST = Vb/(Vb + VW)

Using sequence data: interpopulation
nucleotide diversity

Where,
VXY = divergence among populations X and Y

X = nucleotide diversity in population X
dXY = the probability that two random nucleotides in populations X and Y 
be different 
s = number of populations

• The measure informs about the level of differentiation among nucleotide 
sequences in populations.

• It requires sequence data in a sample of individuals for each population.

• It needs specific computer software that includes sequence alignment 
features.

Some of these are CLUSTAL W, MALIGN and PAUP*.
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Relative differentiation

NST = Vb/(Vb + VW) = 0.03825/(0.03825 + 0.0635) = 0.3759

Average diversity in each population

VW = (1/s) X = ½(0.037 + 0.09) = 0.0635

Total differentiation 

Vb = [1/(s(s – 1))] X YVXY = [1/(2(2 – 1))]0.0765 = 0.03825

Nucleotide divergence between X and Y

VXY = dXY – ( X Y)/2 = 0.14 – (0.037 + 0.09)/2 = 0.0765

Calculating interpopulation nucleotide 
diversity

Let’s say that we have another population Y, in which the nucleotide diversity for the 
same sequence analysed in slide 31 is Y = 0.09.

We also know that the probability that two nucleotides as taken at random are 
different in X and Y is 0.14 (dXY).

In this slide, we find the divergence between populations X and Y (VXY), the total 
differentiation (Vb), the average diversity in each population (Vw) and the relative 
differentiation (NST)..
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…GACTGAATTCCACGGCACTGACGAATTCGA…AGTGAATTCTTACTTAAGCTAGCCTGAATTCGATAC…

…CTGACTTAAGGTGCCGTGACTGCTTAAGCT…TCACTTAAGAATGAATTCGATCGGACTTAAGCTATG…

…GACTGATTTCCACGGCACTGACGAATTCGA…AGTGAATTCTTACTTAAGCTAGCCTGAATTCGATAC…

…CTGACTAAAGGTGCCGTGACTGCTTAAGCT…TCACTTAAGAATGAATTCGATCGGACTTAAGCTATG…

DNA 

Indiv. 1

DNA 

Indiv. 2

Restriction site EcoRI

No recognition 

site for EcoRI

Fragment 1 Fragment 2

Fragment 2

M I1 I2

Gel

Fragment  2

Fragment  1

Using restriction data: variations in banding 
patterns

The lack of fragment 1 in Individual2 indicates that it carries a different DNA 
sequence at least in that restriction site. A small difference of just two nucleotides, 
in the drawing above, is sufficient to make the recognition site for the enzyme to 
disappear. 
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This measure ( ) is based on the number of 
restriction fragments present in two samples

= - (1/r)ln G  

(if < 5%)

Using restriction data: intrapopulation
nucleotide diversity

Where,
r = number of recognition nucleotides of a restriction enzyme
ln G = natural logarithm of the probability that there was no substitution in 
the restriction site. Its calculation is:

G = F(3 – 2Gº)1/4

F = [ Xi(Xin – 1)]/[ Xi(n – 1)]

F = proportion of shared fragments
Gº = F1/4

n = number of haploid genotypes in the population 
Xi = estimated frequency of the ith fragment in the population 

• The measure estimates the diversity in restriction sites in a sample, because 
it relies on the nucleotide sequence of the recognition sites of a given 
restriction enzyme. 

• It informs about the nucleotide substitution in restriction sites. It varies from 0 
to 1 (0 X 1).

• The equations above can be used with haploid samples, mDNA, cpDNA or 
haplotypes.

Reference

Karp, A., P.G. Isaac and D.S. Ingram. 1998. Molecular Tools for Screening 
Biodiversity: Plants and Animals. Chapman & Hall, London. 
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This measure (VXY) indicates the divergence or 
differentiation among populations based on 
restriction data

VXY = dXY – ( X + Y)/2

This measure is also used with RAPD marker 
data

Using restriction data: interpopulation
nucleotide diversity

Where,
VXY = divergence or differentiation among populations X and Y

X = restriction diversity in population X
dXY = fragment diversity among two populations = – (2/r)ln (GXY)        
GXY = FXY(3 – 2GºXY)1/4

Gº = FXY
1/4

FXY = proportion of shared alleles among populations X and Y 
= (2 XiXXiY)/( (XiX + XiY))     

XiX = estimated frequency of the i fragment in population X

• It estimates diversity in the restriction sites of a sample of two or more 
populations. It informs about the nucleotide substitution in the restriction sites.

• Computer software such as BIOSYS and GENEPOP are useful. Data 
obtained are considered as belonging to haploid organisms.

If used with RAPDs, the value of ‘r’ is replaced by the primer length (r = 10). 
In addition, some assumptions are taken:

The appropriate primers are used
Polymorphism due to insertion or deletion is rare
Similar size fragments in different populations belong to the same locus
Fragments must be identified without error

Software such as RAPDISTANCE and RAPDIS is typically used.
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Calculating interpopulation nucleotide 
diversity

P
o
p
u
l
a
t
i
o
n

X X = -(1/6) ln (0.039358) = 0.539176

G = 0.0325[3 – 2(0.424591)]1/4 = 0.039358G° = (0.0325)1/4 = 0.424591

F = [0.30(0.30 3 – 1) + 0.25(0.25 3 – 1) + 0.45(0.45 3 – 1)] = 0.0325

0.30(3 – 1) + 0.25(3 – 1) + 0.45(3 – 1)

9/20 = 0.45A3

5/20 = 0.25A2

6/20 = 0.30A1

Freq. Xi2019181716151413121110987654321Seq.

P
o
p
u
l
a
t
i
o
n

Y Y = -(1/6) ln (0.272587) = 0.216633

G = 0.2425[ 3 – 2(0.701743)]1/4 = 0.272587G° = (0.2425)1/4 = 0.701743

F = [0.25(0.25 3 – 1) + 0.65(0.65 3 – 1) + 0.10(0.10 3 – 1)] = 0.2425

0.25(3 – 1) + 0.65(3 – 1) + 0.10(3 – 1)

2/20 = 0.10A3

13/20 = 0.65A2

5/20 = 0.25A1

Freq. Xi2019181716151413121110987654321Seq.

In each population, we detected three DNA fragments as a result of a restriction 
digest: A1, A2 and A3.

Nucleotide diversity in the regions analysed is larger in population X ( X = 0.5392)
than in population Y ( Y = 0.2166); thus, X has more gene diversity than Y.

Between populations X and Y, the nucleotide differentiation based on restriction sites 
is 0.230766.

0.613052
1/4

0.14125XYG

0.141250.100.450.650.250.250.30
0.10*0.450.65*0.250.25*0.302

F

163012.04/1613052.02314125.0GXY

604643.0163012.0ln6/2dXY

226739.0216633.0539176.0
2

1604643.0VXY

377905.0216633.0539176.0
2

1VW

11337.0226739.0
2

1Vb

0.230766
0.3779050.11337

0.11337
NST
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The genetic distance between two samples is 
described as the proportion of genetic elements 
(alleles, genes, gametes, genotypes) that the 
two samples do not share

D = 1 when, and only when, the two samples 
have no genetic elements in common

Quantifying genetic relationships: genetic
distance

Depending on the similarities of individuals, three representation types of distance 
(D) are possible:

• D = 1 – S, known as linear distance, because it assumes that the relationship 
with similarity is linear.

• D = (1 – S), known as quadratic distance because it assumes that the 
relationship with similarity follows a quadratic function, so that, to make it 
linear, the square root must be calculated.

• D = (1 – S2), known as circular distance. 

Linear
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Calculation of distance, or dissimilarity, follows one 
of two possible models:

Equilibrium model

Distance remains constant over 
time (equilibrium exists between 

migration and genetic drift)

Distance changes with time 
through migration and 

genetic drift

d

d

t

t + 1
t + 1

d2

d1

t

Disequilibrium model

Distance models

For our purposes, we will use the disequilibrium model. Two alternatives exist:

• Geometric distance
Does not take into account evolutionary processes 
Based only on allele frequencies 
Complex relationship exists between distance and divergence time

• Genetic distance
Does not take into account evolutionary processes 
Distance increases from the time of separation from an ancestral population 
A genetic model of evolution is needed

When should we use geometric or genetic distance?

• Geometric distance is used for diversity studies in which comparisons are made 
according to morphological or marker data gathered from the operative taxonomic 
units (OTUs). OTUs may be individuals, accessions or populations. It can be used 
with dominant markers (RAPDs, AFLPs) or codominant markers. Because 
evolutionary aspects are not considered, the dendrograms obtained cannot be 
interpreted as phylogenetic trees giving information about evolution or divergence 
among groups.

• In contrast, the genetic distance of any given OTU can be incorporated into phylogeny 
studies. The model considers allelic frequencies in OTUs and its mathematical 
foundation is different. It can be used with both codominant and dominant markers, 
although, with the latter, information is lost because only two alleles can be scored. 
Genetic distance with dominant markers, however, requires the examination of two 
generations of the same population to measure the segregation of loci (Lynch and 
Milligan, 1994).

Reference

Lynch, M. and B.G. Milligan. 1994. Analysis of population genetic structure with RAPD 
markers. Mol. Ecol. 3:91-99.
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Disequilibrium models: geometric distance

This measures the direct relationship between 
the similarity index (s) and distance (D = 1 – s)

Different situations are possible, for example:
• Binary variables
• Quantitative variables 
• Mixed types of variables
• P number of variables

(continued on next slide)

When analysing molecular data, we deal with binary variables (1,0). These will be 
discussed in the following slides.

In Appendix 4, you will find additional information for those cases where you also 
must deal with quantitative variables, mixed types of variables and a varied number 
of variables. In Appendix 5, an example of calculating geometric distances with
quantitative variables has also been added.
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With binary variables: 
• Multivariate analysis is used and similarity or 

differentiation matrices are formed between the 
possible pairs of individuals or operative taxonomic 
units (OTUs)

• Two similar individuals simultaneously have the 
minimum value of distance and the maximum value of 
similarity

• Distance and similarity are inversely related 
• Similarity is estimated by the number of coincidence

Geometric distance (continued)

When using molecular marker data and transforming them to binary data, the 
following should be considered:

• A species’s ploidy number may mask the presence of allelic series in a locus. 
If this happens, genetic diversity will be underestimated when using dominant 
markers (presence/absence).

• If a marker is codominant, large samples are needed to permit detection of all 
possible genotypes, particularly if there are several alleles per locus. 

• Segregation distortions are common in polyploid species. 

• Most specialized computer software are designed to analyse diploid species. 
Therefore if used with polyploid species, biases may occur on estimating the 
various genetic diversity indices.  

• The reproductive system of certain species has not been studied, so their 
inheritance type is not sufficiently known. 

• The largest coverage (coding and non-coding regions) possible of the 
genome of the species under study should be sampled and analysed so that 
estimates of genetic diversity are reliable.
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Locus A   

diploid 

(2X) 

Locus A 

tetraploid 

(4X)

Individuals

M 1 2 3 4 5 6 7 8 9 1810 11 12 1716151413

Calculating allele frequencies for diploids 
and tetraploids: dominant marker

M 1 2 3 4 5 6 7 8 9 1810 11 12 1716151413

1    1     0    1     1      1     1     0     1     1      1   0    1     1     1      0    1     1

1    1     0    1     1      1     1     0     1     1      1   0    1     1     1      0    1     1

Binary

matrix

Allele freq.Genotypes
Locu

s

0.69

q

0.47

q

0.31

p

0.53

p

Totalaaaa
AAAA, AAAa, AAaa, 

Aaaa
Tetraploid

A

(4X)
1q4p4 + 4p3q + 6p2q2 +

4pq3Gen. freq. (e.)

18414Indiv. number

1P2 = 0.22P1 = 0.78Gen. freq. (o.)

1P2 = 0.22P1 = 0.78Gen. freq. (o.)

14

p2 + 2pq

AA, Aa

184Indiv. number

1q2Gen. freq. (e.)

TotalaaDiploid

A

(2X)

Allele frequencies should be different in both cases; however, the information loss in 
the tetraploid individual is significant. Why? This is because, to estimate the 
frequency of the recessive allele a, heterozygotes AAAa, AAaa, Aaaa are not taken 
into account. This effect is larger when the ploidy number of the species under 
study is unknown. 
(e. = expected value; o. = observed value.)

This example of 18 individuals from each of a diploid and a tetraploid species was 
analysed with a dominant marker. We are assuming that the banding patterns 
obtained are alike. Bands are converted to a binary table in both cases. The 
calculations of the frequencies are given in the table below. We can see that, in the
tetraploid, genotype 1, for example, can be either AAAA, AAAa, AAaa or Aaaa; 
however the band will only be scored as present (1) the same as it will in the diploid 
(AA or Aa).
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Locus A 

diploid 

(2X)

Locus A

tetraploid 

(4X)

Diploid 

binary

matrix

I    N    D   I    V    I    D    U   O    S

(1,0,0) (1,0,1) (0,0,1) (1,0,1) (0,1,1) (1,0,0) (1,0,1) (0,0,1) (0,0,1) (0,1,0) (1,1,0) (0,0,1) (0,0,1) (0,0,1) (0,0,1) (0,1,1) (1,0,1) (0,0,1)

M 1 2 3 4 5 6 7 8 9 1810 11 12 1716151413

Calculating allele frequencies for diploids 
and tetraploids: codominant marker

Individuals

A
1

A
1

A
1

A
1

A
1

A
1

A
2

A
3

A
1

A
2

A
2

A
3

A
1

A
2

A
3

A
3

A
3

A
3

A
3

A
3

M 1 2 3 4 5 6 7 8 9 1810 11 12 1716151413

A
1

A
1

A
1

A
2

A
1

A
3

A
2

A
2

A
2

A
3

A
3

A
3

In this example, we have 18 individuals from each of a diploid and tetraploid species 
and analysed with a codominant marker. One locus is detected (A) with three alleles 
in both situations (A1, A2 and A3).

Calculating the allele frequencies in the diploid individual is not difficult (binary 
matrix, bottom of slide). For the tetraploid individual, however, conversion to binary 
data is hampered by the fact that individuals with alleles A1 A1 A2 A3 cannot be 
distinguished from those with other combinations such as A1 A2 A2 A3 or A1 A2 A3
A3. This situation can only be solved by inference based on estimating the DNA 
fragment copy number in the gel.

0.25

p

0.15

q

1

18

1

Tota

l

P13 =

0.22

4

2pr

A1

A3

P22 =

0.06

1

q2

A2

A2

P23 =

0.11

2

2qr

A2

A3

0.60

r

P33 =

0.44

P12 =

0.06

P11 =

0.11

Gen. freq. 

(o.)

2

p2

A1 A1

81Indivs. (no.)

r22pq
Gen. freq. 

(e.)

A3

A3

A1

A2

Genotype

(e. = expected value; o. = observed value.)
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1.250(a + d)/(b + c)Sokal and Sneath 3 (1963)S13

0.714(a + d)/[a + d + (b + c)/2]Sokal and Sneath 1 (1963)S12

0.385(a + d)/[a + d + 2(b + c)]Rogers and Tanimoto (1960)S11

0.556(a + d)/nSokal and Michener (1958)S10

0.750a/(b + c)Kulczynski 1 (1928)S9

0.273a/[a +2(b + c)]Sokal and Sneath 5 (1963)S8

0.429a/(a + b + c)Jaccard (1900, 1901, 1908)S7

0.625(a/2)([1/(a+b)] + [1/(a+c)])Kulczynski 2S6

0.612a/[(a + b)(a + c)]1/2Ochiai (1957)S5

0.600a/[a + (b + c)/2]Dice (1945); Nei and Li (1979)S4

0.500a/max[(a + b),(a + c)]Braun-BlanquetS3

0.750a/min[(a + b),(a + c)]SimpsonS2

0.333a/nRussel and Rao (1940)S1

Example of the coefficient value 

if 

a = 3, b = 1, c = 3, d = 2

ExpressionAuthor

Similarity coefficients for binary variables: 

examples

Where, 
n = a + b + c + d

In the table above we see that:

Indices S1 to S9 give value only to the presence of information
Indices S10 to S13 give value to both presence and absence

Next, we will discuss three indices (in red on top table): Simple Matching (S10), 
Jaccard (S7) and Nei-Li (S4).

c + ddc0

a + 

b
ba1

Indiv.i

b + d

0

a + c

1

Indiv.j

n
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Simple Matching Coefficient, or simple 
concordance coefficient: 

(a + d)/(a + b + c + d)

Jaccard Coefficient:

a/(a + b + c)

Nei-Li Coefficient, or Dice:

2a/(2a + b + c)

Indexes of geometric distance

These three indices differ in their approach for estimating the number of 
coincidences and differences. 

The Simple Matching Coefficient considers that absence corresponds to 
homozygous loci. It can be used with dominant marker data (RAPD and AFLP), 
because absences could correspond to homozygous recessives. An example of 
application of the Simple Matching Coefficient for categorical variables is found in 
Appendix 6 (click here).

The Jaccard Coefficient only counts bands present for either individual (i or j). 
Double absences are treated as missing data. If false-positive or false-negative data 
occur, the index estimate tends to be biased. It can be applied with codominant 
marker data.

The Nei-Li Coefficient counts the percentage of shared bands among two 
individuals and gives more weight to those bands that are present in both. It 
considers that absence has less biological significance, and so this coefficient has 
complete meaning in terms of DNA similarity. It can be applied with codominant 
marker data (RFLP, SSR).
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Measures the difference between two genes, 
proportional to the time of separation from a 
common ancestor

Several models are possible:
• Mutation of infinite alleles

e.g. Nei’s genetic distance

• Stepwise mutation model
e.g. Distance using microsatellites

• Mutation in the nucleotide sequence 

Disequilibrium models: genetic distance

• Mutation of infinite alleles (i.e. isozymes)
Each mutation event gives rise to a new allele. 
If 2 genes are the same, no mutation has occurred. If 2 genes are 
different, an unknown number of mutations occurred.
The average number of mutations since time t when they diverged from 
an ancestor is = 2tµ, where µ is the rate of mutation and is multiplied by 
2 because we are dealing with 2 independent genes.
The probability that 2 genes are common by descent after time t is 
P= e-2tµ.

• Stepwise mutation model (i.e. SSRs)
Mutation is a progressive change so fragments that migrate similar 
distances have had few mutations.
In the case of SSRs, mutation is assumed to change the number of
repeats, increasing or decreasing step by step. It can be shown that the 
square of the difference in the number of repeats between 2 
microsatellites is proportional to the time of divergence from a common 
ancestor. 

• Mutation in the nucleotide sequence 
It indicates that the simplest substitution is the mutation of a single base.
The main limitation is the loss of information by not knowing the number 
of mutations that could have taken place at one site. To solve that 
problem, some methods assume the probability of transition (purine 
purine or pyrimidine pyrimidine) and transversion (purine pyrimidine 
or pyrimidine purine). 
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The standard Nei’s genetic distance is: 

It is based on the concept of genetic identity 
(IXY):

)J(J

J
I

yx

xy
xy

)(IlnD XYXY

Calculating Nei’s genetic distance

(continued on next slide)

Where,
JX = average homozygosity in population X
JY = average homozygosity in population Y
JXY = average interpopulation homozygosity

Such that,
IXY = 1, if two populations have the same allele frequencies in all sampled 
loci
IXY = 0, if two populations do not share the same allele frequencies in all 
sampled loci

• The value of DXY varies from 0 (where populations have identical allele 
frequencies) to infinity ( , where populations do not share any alleles).

• It assumes that the rate of substitution per locus is equal among all loci and 
populations.

• This distance estimates the codon differences per locus between two 
populations.
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D2,3 = 0.0440D1,3 = 0.0107D1,2 = 0.0852Dii’Genetic distance

I2,3 = 0.9570I1,3 = 0.9894I1,2 = 0.9183Iii’Genetic identity

J2,3 = 0.8986J1,3 = 0.9346J1,2 = 0.8733Jii’Average interpop. homozygosity

0.93270.94530.9567JiAverage homozygosity

0.06730.05470.0433HiAverage heterozygosity

0.42000.000.0000hijkLocus heterozygosity

0.700.001.00D2

0.301.000.00D1D

0.00000.32580.2434hijkLocus heterozygosity

0.000.090.13B3

0.000.100.01B2

1.000.810.86B1B

0.45500.38480.3200hijkLocus heterozygosity

0.350.260.20A2

0.650.740.80A1A

Pop.3Pop.2Pop.1

Allele frequenciesAllelesLocus

Calculating Nei’s genetic distance (continued)

We have an example where i = 3 populations, j = 3 polymorphic loci, and there are 
10 monomorphic loci with. Moreover there are different numbers (K) of alleles per 
locus (e.g. A and D have 2 alleles each and B has 3 alleles).

The table shows the results of calculating the allele frequencies in each population, 
as well as the locus heterozygosity. We then calculate the average heterozygosity 
and homozygosity (1 - heterozygosity) per population.

Lastly, we calculate inter-population homozygosity and genetic identity, so that we 
can estimate Nei’s genetic distance. Calculations are as follows:  

jii’jk = ii’j pijk pi’jk, for example, j1,2jk = homozygosity among populations 
1 and 2 

j1,2jk = (0.8)(0.74) + (0.2)(0.26) + (0.86)(0.81) + (0.01)(0.10) + (0.13)(0.09) + 
(0.0)(1.0) + (1.0)(0.0) + 10 = 11.3533

J1,2 = average interpopulation homozygosity = j1,2jk/13 = 11.3533/13 = 
0.8733

I1,2 = genetic identity among populations 1 and 2 = J1,2/ (J1J2) = 
0.8733/ (0.9567 0.9453) = 0.9183

D1,2 = genetic distance among populations 1 and 2 = -ln(I1,2) = -ln(0.9183) = 
0.0852

Because we have not yet explained clustering methods, we present the distance 
matrix and dendrogram of this example in Appendix 7 (click here).
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Calculating intrapopulation distance, using 
microsatellites

Intrapopulation distance is the average of the 
sum of squares of the differences in the number 
of repeats between alleles 

The average intrapopulation distance may be
calculated for all analysed loci (ds)

Where,
aij = size of the allele of the ith copy (i = 1, 2, …, 2n) in the jth population 
(j = 1, 2, …, ds)
n = number of individuals in the sample

Two considerations:

The calculation of distance between two alleles is a transformation of the 
number of repeats. 
One difficulty in using SSRs to estimate genetic distances is their high rate 
of mutation.   
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This is the interpopulation component for the 
average distance among all allele pairwise 
comparisons

j'j i'i
2

j'i'ij

ss
2

B )a(a
1)(dd(2n)

2
S

Calculating interpopulation distance, using 
microsatellites

The global distance is the weighted average among the component intra- and 
interpopulations 

These coefficients represent the probability of choosing two different copies of one 
locus in the same population and between two populations.

Useful computer software: MICROSAT, BIOSYS, GENEPOP, GDA and POPGENE.
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Is the process of grouping (or clustering) objects in 
categories or classes based on their common 
attributes or relationships. Grouping can be:

• Hierarchical:
Essentialist, which tries to unveil the true nature or 
form
Cladistic, which is based on genealogy or phylogeny
Evolutionary, which is based on phylogeny and the 
quantity of evolutionary changes
Phenetic, which is based on the highest number of 
traits of an organism and its life cycle 

• Nonhierarchical

• Overlapping

Displaying relationships: classification or 
clustering

• Hierarchical: a major class that contains minor classes termed ‘branches’. 

• Nonhierarchical: each individual is assigned to a unique group by comparing it 
with the initial classes so that its positioning is the most appropriate.

• Overlapping: individuals may belong to more than one group.

Classification types refer to procedures of cataloguing objects, organisms, etc., 
and are used in several fields of knowledge. In our case, we use the hierarchical 
classification because of the nature of relationships between individuals, that is, 
individual, population, accession, variety, etc., are units that cannot be assigned 
to two different groups simultaneously.

Reference

García, J.A., M.C. Duque, J. Tohme, S. Xu and M. Levy. 1995. SAS for 
Classification Analysis; Agrobiotecnology Course, October 1995. Working 
document. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia.
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Phenetic classification

Shows the relationships among samples by using a 
similarity index

A grouping method or distance is selected so that a 
tree diagram (dendrogram) or a phenogram (if the 
similarity matrix contains phenotypic data) can be 
drawn

1 2 3 3 2 4 1

1

2 3

4

In this example of hierarchical grouping, all characters are given the same weight in 
the grouping process.

Total similarity between two groups is the sum of similarity for each character.

It does not consider genealogy.

Phenetic refers to any character used in the classification procedure, whether 
morphological, physiological, ecological, molecular or cytological.
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Clustering methods

Clustering steps: 
• Proximity is defined 
• Each grouping is estimated according to distance
• The branches of the dendrogram are built in each 

cycle

Three main methods are:
• Simple linkage (or ‘nearest neighbour’)
• Complete linkage (or ‘farthest neighbour’)
• Average linkage (or UPGMA)

Other methods for clustering are available such as:

• Unweighted pair-group method using the centroid (UPGMC). It is based on 
the distance between the mean value for each group.

• Weighted pair-group method using the centroid (WPGMC). It takes the OTUs’
median value in the groups.

• Ward. It works with the sum of the squared distances for pairs of OTUs. It is 
also known as the method of minimal variance because, while taking the 
squared values, it becomes a very sensitive method (different OTUs will look 
more dissimilar and similar OTUs will look even closer). It may be used with 
Euclidian distances and molecular data when a high number of DNA bands is 
available.

In the next few slides, we discuss in more detail the three methods listed on the 
slide above and show an example for each.
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Or ‘nearest neighbour’
It minimizes the inter-group distance by taking 
the distance to the neighbour with the highest 
similarity
It works with regular and compact groups, but is 
highly influenced by distant individuals. This is
inconvenient when there are different groups 
that are not well distributed in space

Group 1 Group 2

d(1,2)
d(1,2) = minimum distance 

between two OTUs

Simple linkage
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Simple linkage: an example

00.400.600.28D

00.350.43C

00.30B

0A

DCBA
(1) (2)

(3)

00.400.30AD

00.35C

0B

ADCB

0.100.200.300.400.50 0.0

A

D

B

C

(4)

00.35ADB

0C

ADBC

1. The distance matrix is formed first; then, in a first cycle, the shortest distance is 
selected dAD = 0.28.

2. A new matrix is formed by grouping individuals A and D and calculating the 
combined distances:  

dB(AD) = min (dBA; dBD) = min (0.30; 0.60) = 0.30
dC(AD) = min (dCA; dCD) = min (0.43; 0.40) = 0.40

3. A new matrix is formed by grouping individual B with group (AD) and calculating 
the combined distances 

dC(ADB) = min (dAC; dCD; dCB) = min (0.43; 0.40; 0.35) = 0.35

4. The dendrogram is drawn.
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Or ‘farthest neighbour’
It minimizes the inter-group distance by taking 
the distance to the individual with minimal 
similarity
It works well with regular and compact groups 
but, again, it is influenced by distant individuals

Group 1 Group 2

d(1,2)

d(1,2) = major distance 

between two OTUs

Complete linkage
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Complete linkage: an example

00.400.600.28D

00.350.43C

00.30B

0A

DCBA
(1) (2)

(3) (4)

00.400.30BD

00.43C

0A

BDCA

0.100.200.300.400.500.60 0.0

A

D

B

C

00.40DB

0AC

DBAC

1. The distance matrix is formed first; then, in a first cycle, the longest distance is 
selected, dBD = 0.60.

2. A new matrix is formed by grouping individuals B and D and calculating the 
combined distances:

dA(BD) = max(dBA; dAD) = max(0.30; 0.28) = 0.30
dC(BD) = max(dCB; dCD) = max(0.35; 0.40) = 0.40

3. The new matrix is formed with groups AC and BD, and the combined distances 
calculated: 

d(AC)(DB) = max (dAD; dAB; dCD; dCB) = max (0.28; 0.30; 0.40; 0.35) = 0.40

4. The dendrogram is drawn.
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Or ‘unweighted pair-group method using the 
arithmetic average’ (UPGMA)
It minimizes the inter-group distance by taking 
the average pairwise distance among all 
individuals of the sample
Most used method

d(1i ,2j) = average distance 

between OTUi and OTUj of 

groups 1 and 2

Group 1 Group 2

Average linkage
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Average linkage: an example

00.400.600.28D

00.350.43C

00.30B

0A

DCBA
(1) (2)

(3) (4) 0.10.20.30.40.5 0.0

B

D

A

C

00.4150.45AD

00.35C

0B

ADCB

00.42AD

0BC

ADBC

1. The distance matrix is formed first; then, in a first cycle, the shortest distance 
is selected, dAD = 0.28

2. Next, a matrix is formed by grouping individual A with D and calculating the 
combined distances:  

dB(AD) = (dBA + dBD)/2 = (0.30 + 0.60)/2 = 0.45
dC(AD) = (dCA + dCD)/2 = (0.43 + 0.40)/2 = 0.415

3. A new matrix is formed by grouping the individuals with the shortest distance B 
with C, and calculating the combined distances:

d(AD) (BC) = (dAB + dAC + dBD + dBC)/4 = (0.30 + 0.43 + 0.60 + 0.35)/4 = 0.42



60

Copyright: IPGRI and Cornell University, 2003 Measures 60

First, gather knowledge of the species under 
study such as its diversity, reproduction system, 
ploidy number and levels of heterozygosity

Carefully select the genetic characters to 
analyse

Test different clustering methodologies and 
assess the level of agreement obtained with 
each of them

Choosing a clustering method

In addition, it will always be important to combine as much information as 
possible. An example may be found in Appendix 8 (click here), in which 
both morphological and molecular data are available, and the use of 
separate data sets is compared with the use of combined data.
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External validation

Internal validation

Relative validation

Bootstrapping

Validating the clustering analysis

External validation:
The matrix distance is compared with other information not used in the 
grouping calculations (e.g. genealogy).

Internal validation:
This technique quantifies the distortion due to the grouping method used. It 
builds a new similarity or distance matrix, the ‘co-phenetic matrix’, directly 
from the dendrogram. Validation is calculated by means of a correlation 
coefficient between similarity or distance data from the original matrix and 
those from the new co-phenetic matrix. Whether the original distances are 
maintained is assessed after the grouping exercise (Sokal and Rohlf, 1994).

Relative validation:
Similarity between methods is compared.

Bootstrapping:
This is a re-sampling method by replacement with the same data matrix. It 
allows calculation of standard deviations and variances, and is useful for 
those situations in which the number of samples or resources (e.g. time, 
budget) is limited.

Examples of applying the co-phenetic correlation and bootstrapping methods are 
shown next.

Reference

Sokal, R. and J. Rohlf. 1994. Biometry: The Principles and Practice of Statistics in 
Biological Research (3rd edn.). Freeman & Co, NY.
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00.400.600.28D

00.350.43C

00.30B

0A

DCBA

Original distance matrix

Dendrogram

0.100.200.300.400.500.60 0.0

00.430.430.28D

00.350.43C

00.43B

0A

DCBA

Co-phenetic matrix

B

D

A

C

0.280.350.43

Co-phenetic correlation = 

0.5557

Co-phenetic correlation: an example

To construct the co-phenetic matrix, we look at the dendrogram previously built with
the original matrix (this example comes from slide 58). We see that the distance 
between D and C in the dendrogram is 0.43, so we fill that cell in the co-phenetic 
matrix. Distance between B and C is 0.35, and so on.

Calculations for the co-phenetic correlation are based on the correlation coefficient:

r = ( XiYi - Xi Yi/n)/SXiSYi

Where,
Xi and Yi are the similarity or distance values of the original and co-
phenetic matrix, respectively
SXi and SYi are the standard deviations for each variable

If the correlation value is high, we can conclude that the dendrogram does indeed 
reflect the distances in the original matrix and that therefore there is no distortion 
due to the grouping method. In the above example, we obtained a value 0.5557. 
This is an average value that could indicate that the dendrogram distances do not 
reflect the distance data in the original matrix, and so distortion exists because of 
the method used. However, in building the example, we used very few data; nor 
were they the real results of an experiment, thus explaining the value obtained.
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1000L5

0011L4

1101L3

1010L2

1001L1

P4P3P2P1

Data matrix

Similarity matrix

A P1 P2 P3 P4

Gel

B

C

D
E

(1) (2)

(3)

Bootstrapping validation: an example

10.4000.2000.400P4

10.4000.600P3

10.400P2

1P1

P4P3P2P1

(continued on next slide)

In the gel above (top left corner), we have 4 individuals (Pi) and 5 loci (Lj). We will 
suppose we perform the validation in three samples with replacement.

First, we score the marker data in the individuals (data matrix) and then, we 
calculate the average similarity (simple matching) and its interval.
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10.400 ± 0.2000.200 ± 0.0000.533 ± 0.115P4

10.400 ± 0.2000.600 ± 0.000P3

10.267 ± 0.115P2

1P1

P4P3P2P1

Average similarity matrix 

with standard deviations

Dendrogram before replacement Dendrogram with replacement 

Bootstrapping validation: an example 
(continued)

1

0.25 0.44 0.63 0.81 1.00

3

2

4

0.11 0.33 0.56 0.78 1.00

1

3

4

2

For each individual, the value for each locus is taken, one by one, with replacement 
and a sample formed of equal size to the number of loci. The possibility exists that a 
locus is selected one or more times. For the example: 

M1: L1 L1 L2 L3 L5 (locus L4 was not drawn)
M2: L1 L2 L3 L4 L3

M3: L3 L1 L5 L2 L4

In each sample a similarity matrix is calculated.

Average similarities and their standard deviations are estimated for each individual 
pair (1 & 2, 1 & 3, 2 & 3, and so on), and the average similarity matrix is created.    

A new dendrogram is built, using the average similarity matrix.

For real situations, more than 100 replacement samples should be created.
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Ordination is the arrangement or ‘ordering’ of 
sample units along coordinate systems

The purpose of ordination, as well as 
classification methods, is to interpret patterns in 
the composition of samples

Displaying relationships: ordination

Ordination is a multivariate method that complements clustering, and is usually 
considered to be an approach that is closer to biological reality.

With ordination methods, we want to represent the relationships of samples in a 
simple way by reducing the real situation to a ‘low dimensional space’ (Gauch, 
1982). In doing so, the sample’s composition is studied as a whole, the statistical 
power of the analysis is improved because redundancy is somehow eliminated or 
reduced, and the relative importance of different gradients can be determined. Most 
of all, we get graphical representations that help us intuitively interpret the 
relationships of the different groups of samples. 

In principle, ordination is both an exploratory and hypothesis-testing tool. In any 
case, the results obtained with ordination methods should always be contrasted with 
the available knowledge of the sample being studied and as much as possible with 
additional information related to the biological question being addressed in the 
research.

Reference

Gauch, H.G., Jr. 1982. Multivariate Analysis and Community Structure.
Cambridge University Press, UK. 
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Principal coordinates analysis (PCoA)

Nonmetric multidimensional scaling (NMDS)

Correspondence analysis (CA)

Useful ordination methods for molecular 
marker data

Many ordination techniques exist—some are based on distance data or on the 
calculations of the so-called Eigenvalues (the sum of all variances for each 
character in each component). However, those techniques based on continuous 
variables (e.g. principal component analysis or PCA) are not appropriate for use 
with marker data. Hence, we discuss only briefly the three listed in the slide above. 
More details on the basics of these methods would require a deeper mathematical 
understanding of the algorithms involved than what we expect from the average 
user of this module. We therefore encourage our readers who want to know more 
about these methods to search for ordination methods through the Web. For an 
overview, check the site 
<http://www.okstate.edu/artsci/botany/ordinate/overview.htm>

Principal coordinates analysis (PCoA) attempts to represent distances between 
samples and may accommodate matrices from different dissimilarity measures. It 
maximizes the linear correlation between sample distances. When used with 
Euclidean distances, the results are identical to PCA.

Nonmetric multidimensional scaling (NMDS) works by maximizing the rank order 
correlation and attempting to find the best shape to accommodate the data. This 
technique uncovers the basic configuration from the dissimilarity sample matrix. 
With NMDS, only the pattern of points is relevant, not the origin, and the 
representation may be rotated.

Correspondence analysis (CA) repeats the averages of sample scores and finds 
spots where all samples falling in the same spot are as similar as possible and, 
simultaneously, samples at different spots are as different as possible.
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Appendices

2. Analysis of molecular variance: example 1

3. Analysis of molecular variance: example 2

4. Geometric distance

5. Transforming data from quantitative variables: an example

6. Applying the simple matching coefficient for morphological characters 
(categorical variables)

7. Calculating Nei’s genetic distance

8. Morphological and molecular similarities
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The analysis of genetic diversity and structure of 
populations involves:

• The quantification of diversity and the relationships 
within and between populations and/or individuals

• The display of relationships

Molecular data are usually handled as binary 
data

Molecular data can be usefully complemented 
with morphological or evaluation data. To do so, 
there types of variables can be transformed to 
binary variables

In summary
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The basic steps involved in measuring genetic 
diversity
The major ways to describe genetic diversity within 
and among populations
The correct selection of distance calculation to 
assess relationships in the sample of interest
The differences between alternative clustering 
methods
The options available to validate grouping 
The basic notions underlying the concept of 
ordination
The similarities and differences between clustering 
and ordination

By now you should know …
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Software programs for analysing genetic 
diversity

Glossary

Next


